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GLOSSARY OF ACRONYMS 

A 

AGP (Ancillary Geographic Product) 
ASCM (Angular Signature Cloud Mask) 
ATB (Algorithm Theoretical Basis) 
AU (Astronomical Unit) 
AZM (Azimuthal Model) 

B 

BRF (Bidirectional Reflectance Factor) 

C 

CCD (Charge-Coupled Device) 
ClearHC (Clear with High Confidence) 
ClearLC (Clear with Low Confidence) 
CloudHC (Cloud with High Confidence) 
CloudLC (Cloud with Low Confidence) 
CSSC (Cloud Screening Surface Classification) 

D 

DSVI (D-parameter Spatial Variability Index) 

E 

ECS (EOSDIS Core System) 
EOSDIS (Earth Observing System Data and Information System) 
EPA (Environmental Protection Agency) 

I 

IFOV (Instantaneous Field Of View) 
IR (Infrared) 
ISCCP (International Satellite Cloud  Climatology Project) 

M 

MISR (Multi-angle Imaging SpectroRadiometer) 

N 

NDVI (Normalized Difference Vegetation Index) 
NOAA (National Oceanic and  Atmospheric Administration) 
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R 

RC (Radiometric Camera-by-camera) 
RCCM (Radiometric Camera-by-camera  Cloud  Mask) 
RDQI (Radiometric Data Quality Indicator) 
RLRA (Reflecting Level Reference Altitude) 

S 

SCF (Science Computing Facility) 
SDCM (Stereoscopically Derived  Cloud Mask) 
SDP (Science Data Production) 
SERCAA (Support of Environmental Requirements for Cloud  Analysis  and Archive) 
SVI (Spatial  Variability  Index) 

T 

TOA (Top-of-Atmosphere) 

W 

WGS (World Geodetic System) 
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1. INTRODUCTION 
1.1 PURPOSE 

This Algorithm Theoretical Basis (ATB) document describes the algorithms used to retrieve 
the Radiometric Camera-by-camera Cloud Mask (RCCM) within  the  MISR Level 1B2 Geo-recti- 
fied Radiance Product. These parameters are summarized in Table 1. In particular, this document 
identifies sources of input data, both MISR and non-MISR, required for parameter retrievals; in- 
cludes implementation details; and provides the physical  theory  and mathematical background un- 
derlying derivation of the RCCM. This ATE3 is used by the  MISR Science Data System Team to 
establish requirements and functionality of the data processing software. 

Table 1: RCCM  parameters  within  the  Level 1B2 Geo-rectified  Radiance  Product 

Parameter  name Units * Radiometric  Camera-by- 
camera  Cloud  Mask 
(RCCM) 

RCCM quality flag f none 

~~ 

Horizontal 
Sampling and 

Coverage 

1.1 km (Global) 

1.1 km (Global) 

Comments 

Calculated on a  camera-by-camera basis 
Indicates one of five designations: 
--Cloud  with high  confidence  (CloudHC) 
--Cloud with  low confidence  (CloudLC) 
--Clear with  low confidence  (ClearLC) 
--Clear with high  confidence  (ClearHC) 
--No  Retrieval (NR) 
Also contains glitter flag: 
--Not glitter contaminated 
--Glitter contaminated 

Associated  with the RCCM 
Indicates one of four designations: 
--No Retrieval 
--Secondary  test  used  only 
--Primary  test  used  only 
--Both  primary  and secondary tests used 

In addition, this document describes three ancillary datasets which are used as part of RCCM 
generation, the Radiometric Camera-by-camera (RC) Histogram Dataset, the RC Threshold 
Dataset, and the Cloud Screening Surface Classification (CSSC) Dataset. The first contains histo- 
grams of observables, derived from  MISR data, which are used  to generate updated values of  the 
thresholds used in deriving the  RCCM. The second contains values of the static, seasonal, and 
monthly thresholds used to determine whether a particular 1. I-km area is to be classified as cloudy 
or clear. The third provides a surface classification required for allocating the appropriate thresh- 
olds for clearkloud discrimination. 



1.2 SCOPE 

This document covers the algorithm theoretical basis for the parameters of the RCCM,  the 
RC Histogram Dataset, and  the RC Threshold Dataset, as well as a description of the CSSC 
Dataset. Current development and prototyping efforts may  result  in modifications to parts of cer- 
tain algorithms. Only the algorithms which  will  be implemented at  the DAAC for routine process- 
ing will be preserved in the final release of this document. 

Chapter 1 describes the purpose and scope of  the  document. Chapter 2 provides a scientific 
and historical background. The processing concept and algorithm description is presented in Chap- 
ter 3. Chapter 4 summarizes assumptions and limitations. Literature references used throughout the 
document are provided in Chapter 5. Within the text, these references are indicated by a number in 
italicized square brackets, e.g., [ I ] .  

1.3 MISR DOCUMENTS 

I 
A listing of MISR Project documents referenced within the  text is provided below. Referenc- 

es are indicated by a number in italicized square brackets as follows, e.g., [M-I].  The MISR web 
site (http://www-misr.jpl.nasa.gov) should be consulted to determine the latest released version of 
each of these documents. 

[M-I]  Experiment Overview, JPL D- 13407. 

[M-2] Data Product Description, JPL D-11103. 

[M-3] Level 1 Radiance Scaling and Conditioning Algorithm Theoretical Basis, JPL 
D- 1 1507. 

\ 

[A441 Level 1 Georectification and Registration Algorithm Theoretical Basis, JPL 
D- 1 1532. 

[M-5] Level 1 In-flight Radiometric Calibration and Characterization Algorithm 
Theoretical Basis, JPL D-13398. 

[M-6] Level 1 Ancillary Geographic Product Algorithm Theoretical Basis, JPL D- 
13400. 

[M-7] Level 1 In-flight Geometric Calibration Algorithm Theoretical Basis, JPL D- 
13399. 

[M-S] Level 2 Cloud Detection  and Classification Algorithm Theoretical Basis, JPL 
D- 1 1399. 

http://www-misr.jpl.nasa.gov


LM-91 Level 2 Top-of-Atmosphere  Albedo  Algorithm Theoretical Basis, JPL D- 
13401. 

[M-Io] Level 2 Aerosol  Retrieval  Algorithm  Theoretical Basis, JPL D-11400. 

[ M - l l ]  Level 2 Surface  Retrieval  Algorithm  Theoretical Basis, JPL D-11401. 

I 
Level 2 Ancillary  Products  and Datasets Algorithm Theoretical Basis, JPL 

D- 13402. 

["I31 Algorithm  Development Plan, JPL D-11220. 

["I41 In-flight Radiometric  Calibration  and  Characterization Plan, JPL  D-133 15. 

[M-15] In-flight Geometric  Calibration Plan, JPL D-13228. 

[M-16] Science Data Validation  Plan, JPL  D- 12626. 

["I71 Science Data Processing Sizing Estimates, JPL D-12569. 

1.4 REVISIONS 

The original version of this  document  was contained within  the Level 2 TONCloud ATB 
dated March 3, 1994 and  revised  on  December 19, 1994. Subsequently, radiometric camera-by- 
camera cloud masking  was  moved  from  Level 2 processing  to  Level 1 processing. The original re- 
lease of this  document  was  dated  August 15, 1996.  Revision A was released November 25, 1997.. 
This release is Revision B. Changes from Revision A consist of minor editorial updates. Modifi- 
cations from the previous version  are  denoted by change bars, as  shown at left. 

I 
\ 
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2. EXPERIMENT OVERVIEW 
2.1 MISR  INSTRUMENT 

The MISR instrument consists of nine pushbroom cameras. From the 705-km descending 
polar orbit, the overlap swath  width  of the MISR imaging data (that is, the swath seen in common 
by all nine cameras) is 360 km,  which provides global multi-angle coverage of the entire Earth in 
9 days at the equator, and 2 days  at the poles. The cameras are arranged with one camera pointing 
toward the nadir (designated An), one bank of four cameras pointing in the forward direction (des- 
ignated Af, Sf, Cf, and Df  in order of increasing off-nadir angle), and one bank  of four cameras 
pointing in the aftward direction (using the same convention  but designated Aa, Ba,  Ca, and Da). 
Images are acquired with  nominal  view angles, relative to the surface reference ellipsoid, of O", 
26.1 O ,  45.6", 60.0", and 70.5" for An, Af/Aa, BfBa, Cf/Ca,  and Df/Da, respectively. Each camera 
uses four Charge-Coupled Device (CCD) line arrays in a single focal plane. The line arrays consist 
of 1504 photoactive pixels plus  16 light-shielded pixels per array, each 21 pm  by 18 pm. Each line 
array is filtered to provide one of four MISR spectral bands. The spectral band shapes are approx- 
imately gaussian, and centered at 446,558,672, and 866 nm. The combination of nine cameras and 
four spectral bands yields a total of 36 channels within  the instrument. 

The crosstrack IFOV and sample spacing of each pixel is 275 m for the all of the off-nadir 
cameras, and 250 m for the  nadir camera.. Downtrack IFOV's depend on view angle, ranging from 
214 m in the nadir to 707 m at  the most oblique angle. Sample spacing in the downtrack direction 
is 275 m in all cameras. An  on-board capability within the instrument enables averaging 4 x  4 ar- 
rays of samples on a channel-by-channel basis. 

2.2 OBJECTIVES OF RCCM  GENERATION 
1 

The RCCM is used for several purposes during MISR geophysical parameter retrievals. 
Within the  TOA/Cloud Product, the RCCM is combined with  the Stereoscopically Derived Cloud 
Mask (SDCM) to (1) establish final, reported values of the Reflecting Level Reference Altitude 
( E R A ) ,  (2) determine whether a scene is classified as clear or cloudy for the purpose of choosing 
the angular integration coefficients (azimuthal models, or AZM's) which are used in estimating 
TOA albedos, and (3) calculate regional scene classifiers [M-8]. Retrieval of aerosol and surface 
properties within the Aerosol/Surface Product requires  the  absence of clouds, in order that the as- 
sumptions inherent in the retrievals are not invalidated [M-101, [M-ZZ]. 

2.3 HISTORICAL  PERSPECTIVE 

Cloud screening involves discriminating between clear and cloudy pixels in an image. Re- 
views of cloud detection methods can be found in [8], [13], and [14].  Methods for identifying 
clouds x e  generally based on radiance threshold, radiative  transfer  model, or statistical techniques 
making  use  of spectral and  textural features in the imagery. Radiance threshold techniques work 
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on a pixel-by-pixel basis, and single or multiple-channel  thresholds are defined which are then  used 
to divide clear and cloudy pixels. Radiative transfer model  techniques  use  one or more spectral ra- 
diance measurements as  input to an atmospheric radiative transfer  model  and retrieve a physical 
quantity such as cloud optical thickness or altitude. The pixels are  then determined to be clear or 
cloudy based  on thresholds in the retrieved quantity. Statistical techniques use groups of adjacent 
pixels. Among these are methods  based  on spatial coherency  between adjacent pixels [2], neural 
networks (e.g., [16]), maximum likelihood decision rules (e.g., [5]), and clustering routines (e.g., 
[7]). Specific cloud detection algorithms applied to satellite data generally have features which are 
beneficial for  a particular scene class. 

2.4 MISR  APPROACH 

Traditional cloud screening methods applied to each MISR camera is a challenging problem 
given the small number of spectral channels available, none of  which are longward of 1 pm.  As a 
result, only a few simple cloud detection observables can  be constructed from arithmetic opera- 
tions on the camera radiances. This requires good estimates of the thresholds that will discriminate 
clear skies from cloudy skies. 

The few observables that are used by the  RCCM to determine clear vs. cloudy depend on 
whether the observations are made over water or land. In case of cloud detection over water, the 
observables are r,, the bidirectional reflectance factor (BRF) in  band 4 (near-IR) at 1.1 km resolu- 
tion, and c3, the standard deviation of the 4 x 4 array of 275 m band 3 (red) BRF’s within a 1.1 km 
area. Over land, the observables are the D parameter, derived from  the band 4 and band 3 BRF’s, 
and the D spatial variability index (DSVI), calculated from  a 3 x 3 array of 1.1 km samples and 
assigned to the middle one. 

\ 

Each observable will  be  tested  by comparing to three thresholds  in order to classify the pixel 
as cloud with  high confidence (CloudHC), cloud with  low confidence (CloudLC), clear with  low 
confidence (ClearLC), or clear with  high confidence (ClearHC). The Support of Environmental 
Requirements for Cloud Analysis and  Archive  (SERCAA) algorithm is a recent example that ap- 
plies confidence levels to cloud masking [9]. The thresholds are derived from time cumulated sta- 
tistics, for a particular observable, over a particular geographical region. For example, Figure 1 
shows a hypothetical example of a one-dimensional frequency histogram for an observable, Q. The 
observables for water tend to  have a peak  at  low  values representing clear conditions, whereas the 
land observables tend to have a peak  at  low  values representing cloud. In either case, the histogram 
may  often  be unimodal. The thresholds are derived from the  histogram using an automated proce- 
dure. However, the thresholds are not backward-propagated through a routine reprocessing step 
(e.g., as done by ISCCP) due to  the  MISR  processing strategy; instead,  they  are applied to  the  next 
set of observations that fall within the  threshold bin. 
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Figure 1. Schematic  view of cloud  thresholding 

The thresholds are a function of  view angle, sun angle, relative view-sun azimuth angle, 
time, and place on globe (or surface type). The time dependence can  be  of 3 kinds: (1) time inde- 
pendent (static), (2) dynamic (seasonal), and (3) dynamic on a less  than seasonal time scale. The 
latter is approximately monthly, on a sliding window. The values  are stored on a global grid system 
in  which the tessellation varies with geographic position. The grid size will be based  on  the unifor-' 
mity  (in time and space) of surface properties. The global grid  system is defined in an ancillary 
dataset known as  the Cloud Screening Surface Classification Dataset. 

\ 

Further background on  the MISR investigation is provided in [M-11. 
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3. ALGORITHM DESCRIPTION 
3.1 PROCESSING OUTLINE 

Generation of the  MISR Radiometric Camera-by-camera Cloud Mask (RCCM) occurs rou- 
tinely as part of Level 1B2 processing, and involves several activities. First, prior to flight, we cre- 
ate at the MISR Science Computing Facility (SCF) a version  of  the RC Threshold Dataset contain- 
ing nominal values for the static thresholds which  will be  used  early  in the mission. This dataset is 
delivered to the DAAC. During the first several months of the  mission, MISR data will  be used to 
revise the static values of  the thresholds, and a new  version of the RC Threshold Dataset will  be 
delivered from the SCF to the  DAAC. In addition, dynamically updated histograms of the observ- 
ables used in MISR radiance-based cloud detection will  be generated at the DAAC, and stored in 
the RC Histogram Dataset. Once the RC Histogram Dataset has  been updated, automated histo- 
gram analysis is performed in order to generate dynamic values of the cloud masking thresholds, 
on seasonal and monthly timescales. These updated values are stored  in the RC Threshold Dataset. 
In all phases, the latest version of the RC Threshold Dataset is  used  to generate the RCCM. 

All RCCM processes, occur by definition on a camera-by-camera basis. Thus, Level lB2 
processing does not include calculation of those observables used  in the generation of  the Stereo- 
scopically Derived Cloud Mask (SDCM) or the Angular Signature Cloud Mask (ASCM), which 
make use  of multiple cameras. The SDCM and  ASCM are generated  as part of Level 2 TONCloud 
Product generation [M-81. 

Processing flow concepts are  shown diagrammatically throughout the document. The  con-. 
vention for the various elements displayed in these diagrams is  shown  in Figure 2. 

0 Input 

0 Process* 

0 Decision or Branch 

‘ @  Intermediate Dataset 

‘Numbers next to process 
boxes refer to sections in the 
text describing  the algorithm 

Figure 2. Conventions  used  in  processing  flow diagrams 

An overview of the RCCM generation process is  shown in Figure 3. Calculation of the ob- 
servables for generation of  the  RCCM  and  the  RC  Histogram  Dataset occur in parallel. The flow 
between update of  the RC Histogram Dataset, updating of the  thresholds,  and generation of an  up- 
dated RC Threshold Dataset is  shown  as a dashed  line to indicate that requires accumulation of data 
of a period of time, and thus occurs on a different time  schedule than the processing which gener- 
ates the RCCM. 
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Numbers  next  to  process 
boxes  refer to sections in the 

3.3.3 3.3.6 
Ancillary 

Geographic Generate 
Product RCCM 

A 

Surface Classif. 

'I 
3.3.4 

Generate 
histograms 4 

Figure 3. RCCM processing overview 

8 



3.2 ALGORITHM  INPUT 

The required inputs for  RCCM generation come from MISR  and non-MISR sources and are 
summarized individually in the following paragraphs. The MISR data either come directly from 
the MISR processing stream, or consist of relatively static inputs, generated pre-flight by the Sci- 
ence Team. 

3.2.1  MISR data 

Required inputs for the  RCCM generation to be obtained from the MISR instrument or from 
the MISR team are summarized in Table 2. Further information on each of the inputs is provided 
below. 

Table 2:  RCCM  Generation  Inputs  (MISR  Data) 

Input data Source of data 

Ellipsoid-referenced geometric  parameters 

Level 1B2 Geo-rectified Radiance  Product Terrain-projected TOA radiances 

Level 1B2 Geo-rectified Radiance  Product 

Radiometric  Data  Quality Indicators (RDQI’s) 

Ancillary Radiometric  Product Exo-atmospheric solar spectral irradiances 

Level 1B2 Geo-rectified Radiance  Product 

I Land/water mask identifier I Ancillary Geographic  Product I 
3.2.1.1 Ellipsoid-referenced geometric  parameters 

These include illumination and view zenith and azimuth  angles relative to the surface normal 
of the World Geodetic System 1984 (WGS84) reference ellipsoid. Azimuth angles are referenced 
to local North. These inputs are  obtained from earlier stages of  the Level 1B2 processing [M-4]. 

3.2.1.2 Terrain-projected TOA radiance 

Terrain-projected TOA radiances are described in [M-4] and  are calculated during earlier 
stages of the  Level lB2 processing. Over ocean, terrain-projected radiances are actually stored in 
the Level lB2 data as ellipsoid-projected radiances, but  they  are  identical  in this case. 

3.2.1.3 Radiometric  Data  Quality  Indicators 

Radiometric Data Quality Indicators (RDQI’s) are described in [M-4] and are calculated dur- 
ing earlier stages of the Level lB2 processing. The RDQI’s are associated with each value  of  radi- 
ance reported at Level 1B2, and  take  on  values of 0 - 3, as follows: 

RDQI = 0: Radiometric accuracy  meets  all specifications 
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RDQI = 1 : Radiometric accuracy  is sufficient for certain applications but some spec- 
ifications are violated (see [M-3] and [M-4] )  

RDQI = 2: Radiance value  is available but  of insufficient accuracy to be used in Lev- 
el 2 retrievals 

RDQI = 3: Radiance value is unavailable. 

Thus, higher quality data are associated  with smaller values of RDQI. 

3.2.1.4  Exo-atmospheric  solar  spectral  irradiances 

These are required to convert radiances to bidirectional reflectance factors, and are obtained 
from the MISR Ancillary Radiometric Product LM-51. There are four values, one for each of the 
MISR spectral bands, and weighted  by  the instrument spectral response. 

3.2.1.5 Landwater mask 

This is  a land/ocean/inland  water/ephemeral  water/coastline mask obtained from the MISR 
Ancillary Geographic Product (AGP). Additionally, the AGP identifies which ocean and inland 
water is classified as deep water  through  the “dark water algorithm  suitability’’ designation. This 
is required because the thresholds used for deep water and shallow water are derived on different 
time scales. The AGP data are provided on 1,l-km centers. The AGP is generated at the MISR SCF 
and stored at  the DAAC. Further details of the AGP are provided in [M-6]. 

3.2.2  Non-MISR  data 

Inputs for RCCM generation obtained from non-MISR  sources are summarized in Table 3. 
\ 

Table 3:  RCCM  Generation  Inputs  (Non-MISR  Data) 

Input  data Source  of  data 

Surface classification 

SDP Toolkit Earth-Sun ephemeris 

Cloud Screening Surface Classification Dataset 

3.2.2.1  Surface  classification 

The Cloud Screening Surface Classification (CSSC) Dataset defines unique surface types  in 
order to allocate the appropriate thresholds for clear/cloud discrimination. Additional information 
on the CSSC Dataset is  provided in 93.5.3. 
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3.2.2.2 Earth-Sun ephemeris 

This is  used to obtain  the Earth-Sun distance, such that  observed radiances can  be  normalized 
to  the standard distance of 1 AU. The source is  the Science Data Production (SDP) Toolkit, which 
is generated by the EOSDIS Core System (ECS) contractor. 

3.3 THEORETICAL  DESCRIPTION 

3.3.1 Generate glitter mask 

3.3.1.1 Physics of the  problem 

Regions determined to be possibly contaminated by sun glitter at particular view angles will 
be included in the generation of histograms and cloud masks; however, during RCCM generation 
they  will also carry a glitter contamination flag. This designation  will be made use of  in higher- 
level processing, and is applied to both water and land areas. The reason for including land in  ad- 
dition to open water is that spatially unresolved water bodies, snow, or recent rainfall can cause 
land observations to be glitter contaminated. In regions flagged as glitter-contaminated, the classi- 
fication assigned by the RCCM  may  be suspect; a classification as clear is probably valid, whereas 
a classification as cloudy may  actually be due to the presence of glitter, rather than cloud. 

For the purpose of generating a glitter mask,  we define a cone of half-angle tc, centered on 
the specular reflection direction. Any  view vector which falls within this cone is flagged as glitter 
contaminated. The  flag is  included  in the RCCM. The algorithm for determining whether to flag a 
view  as glitter-contaminated is  as follows. 

3.3.1.2 Mathematical description of the  algorithm 
\ 

Define a local right-handed Cartesian coordinate system in which the +z-axis is co-aligned 
with  the normal to the Earth's ellipsoid and points  toward  the center of the Earth, the x-axis  is 
aligned with a great circle and points toward the geographic north pole, and the y-axis is orthogonal 
to both  of these (i.e., points East). Let j .  be  the unit vector  pointing in the direction of the Sun's 
rays, in which eo is  the solar zenith angle (relative to  the z-axis) and 40 is  the solar azimuth angle 
(relative to  the x-axis). Then, the vector  which describes the specular reflection direction, 2 ,  has 
polar angles 180" - eo and $o. Let  the  view  vector D point in the direction of photon travel, with  an 
elevation angle e relative to  the  z-axis  and azimuth angle 4. Let po = cosO0 and p = cos( 180" - 0 )  = 
- case. The cone angle between  the specular direction and  the  view direction, 5, is given by: 

1 I 
7 -  - 

cos5 = i.. D = ppo + ( 1 - p - p (  1 - p;)3cos($ - @o) 

Then, if 5 I kc, the  view  is considered to be potentially glitter-contaminated. To be conservative, 



we choose E,, = 30”. 

3.3.2 Convert  radiances  to BRF’s 

3.3.2.1  Physics of the  problem 

The purpose of this step is to convert TOA radiances to BRF’s. The conversion is the same 
for all averaging modes of the  Level  1B2 data, and independent of whether the input radiances are 
projected to 30-km altitude or to the surface. Thus, these BRF’s are used as intermediate datasets 
prior to generation of output parameters, ( e g  BRF referenced  to  the IURA). A pre-calculated so- 
lar irradiance, tailored to the spectral response of  the  MISR instrument, is used for each of the four 
spectral bands. The  BRF is defined as the observed radiance at a particular illumination and view 
geometry divided by the radiance that would  be obtained under the same conditions with a target 
consisting of a perfectly reflecting lambertian surface. The primary process involved is normaliza- 
tion to the solar input. 

3.3.2.2 Mathematical  description of the  algorithm 

The standardized band-weighted solar irradiance for each of the MISR bands for an Earth- 
Sun distance of 1 AU is  obtained from the  MISR  Ancillary Radiometric Product. Determination of 
BRF r in band b is then  given  by: 

where L is the spectral radiance recorded in band b, and d is  the distance to the Sun, in AU, at the 
time of observation. Note that according to  the geometric definitions provided in 93.3.1, the 
convention -p indicates that the  radiation  is  traveling  in  the  upward direction. 

3.3.3 Calculate  observables 

3.3.3.1  Physics of the  problem 

3.3.3.1.1 Water 

Several steps are used to separate haze  from  cloud and partial cloud. The near-IR band (band 
4) is chosen for the initial thresholding steps because it is  less sensitive to changes in atmospheric 
and oceanic constituents compared to  the  other  MISR  bands.  For example, it lies outside the Chap- 
puis bands of ozone. The aerosol effect is also larger at shorter wavelengths,  and water-leaving ra- 
diance is negligible in band 4. Additionally, the standard deviation of high-resolution band 3 
BRF’s is  used to identify  partially  cloudy  regions. 
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3.3.3.1.2 Land 

Over land, we take  advantage of the surface’s spectral signature as  well as the spectral sig- 
nature’s spatial variability. The spectral signatures are optimized to provide the maximum separa- 
tion  between clear and cloudy values [3], [4] .  

3.3.3.2 Mathematical  description of the  algorithm 

3.3.3.2.1 Water 

There are two cloud screening observables, Q, for water surfaces, namely r4, the bidirection- 
al  reflectance factor (BRF) in  band 4 (near-IR)  at  1.1 km resolution, and 0 3 ,  the standard deviation 
of  the 4 x 4 array of 275-m band 3 (red) BW’s within a 1.1 km area. 

In calculating a value of 0 3 ,  up to 16 values of r3 are potentially available for calculating the 
standard deviation. We include in the calculation only those values of r3 that are associated with 
an RDQI I RDQII, where RDQIl is a pre-specified threshold, and require at least nl out of the pos- 
sible 16 values to satisfy this criterion. No weighting by RDQI is used  in the calculation of 0 3 .  At 
present, we set RDQI, = 0, that is, only the best quality data are included in the calculation, and we 
set nl  = 9. If less than nl values of r3 are present, a value of 0 3  is  not calculated and the secondary 
cloud detection test is not applied. In calculating 0 3  from n values of r3, the following formula is 
used: 

!. 

where i-, is  the average of  the 275-m r3 values within a 1.1-km subregion. We include in  the 
calculation of i-, only those values of 1-3 that are associated with  an RDQI I RDQI1. No weighting 
by RDQI is used in  the calculation of T 3 .  

3.3.3.2.2 Land 

Over land, we use a parameter, D ,  derived from the top-of-atmosphere Normalized Differ- 
ence Vegetation  Index (NDVI) and  the  band 3 reflectance,  and  the D spatial variability index (DS- 
VI), calculated from a 3 x 3 array  of 1 . 1  km samples and assigned  to  the middle one. 

The D-parameter is defined by 
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where NDVI is the Normalized Difference Vegetation Index equal to ( r4 - Y 3 ) / (  r4 + r3), T., is the 
average of the 275-m r3 values  within a 1.1-km subregion, and b is chosen so as to maximize the 
distinction between clear-sky and cloudy D values [d l .  The choice of b also tends to maximizes 
the spatial variability of  clear-sky D-values, thus allowing statistical cloud detection techniques to 
work effectively. The statistical technique used is the Spatial Variability Index, or  SVI [ I ] .  For 
each sample, the index is derived by calculating the absolute value  of the difference between D in 
a single sample and the mean  value of the 3 x 3 matrix centered on that sample, i.e., DSVI = ID, - 
D,I, where Dm is the  mean D-value of  the 3 x 3 matrix centered on  the value D,. For non-vegetated 
surfaces b = 0.4; while for vegetated surfaces b = 0.6. These values are obtained from  a limited set 
of AVHRR and AVIRIS  imagery  and  may be modified in the post-launch era. 

As noted above, the value of T., used in Eq. (3) is required to be at  1.1 -km resolution, and is 
calculated from  a straight average of the available 275-m samples. In calculating Y 3  , up  to 16 Val- 
ues of high resolution data are potentially available. We include in the calculation only those values 
of r3 that are associated with an RDQI 5 RDQI2,  where  RDQI2  is a pre-specified threshold, and 
require at least n2 out of the possible 16 values to satisfy this criterion. No weighting by RDQI is 
used in the calculation of F3. At present, we set RDQI2 = 0, that is, only the best quality data are 
included in the calculation, and we set n2 = 9. If less than n2 values of r3 are present, a value of D 
is not calculated. In this event, it  is  not possible to calculate either the primary or secondary test  at 
this location. 

If a valid value of D is calculated at a particular location, then a value of DSVI can be calcu- 
lated provided there are sufficient $slues of D in the 3 x 3 matrix to calculate the mean, Dm. We 
require there to be a minimum of n3 = 5 values of D out of the  maximum possible of 9 in order to 
establish a valid DSVI. Missing surrounding values of D may  result from lack  of data with ade- 
quate RDQI's, or due to location at the swath edge. 

3.3.4 Generate  histograms 

3.3.4.1 Physics of the problem 

Histograms are generated for equal-length time blocks, each 16 days (or more specifically, 
1 EOS cycle of 233 orbits) long. A 16-day  interval is chosen to ensure enough new data to warrant 
the calculation of  the new thresholds. An RC Histogram Dataset  is generated for each 16-day 
block. In general, the upper and  lower  bounds of  the histograms can depend on surface type  and 
sunhiew geometry. For each surface type, the  cloud screening observables, Q, are calculated and 
stored in the RC Histogram Dataset in bins, partitioned as follows: 
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(1) There are 5 view  angle bins, corresponding to the  MISR camera view angles: Na- 
dir, 26.1 ", 45.6", 60.0", and 70.5". 

(2) There are 10 sun  angle cosine (PO) bins: 0.0 I PO < 0.1; 0.1 I PO < 0.2; ...; 0.9 5 po 
I 1.0. 

(3) There are 12  relative azimuth (A@ = @ - $0, the  azimuth difference between the 
view  and illumination angles) bins: 0" I A@ 15";  15" I A@ < 30"; ...; 165" I A$ 
I 180".  Symmetry  about the principal plane is assumed, such a value of A@ > 
180"  is replaced by 360" - A@. 

(4) The histogram of each observable is  broken  up into 128  gray levels. 

Surface type is established by referencing the  Ancillary Geographic Product (AGP) and the 
Cloud Screening Surface Classification (CSSC) Dataset. If the AGP specifies that the surface is 
covered by ocean or inland water, the cloud screening observables for water are calculated and 
stored in the part of the RC Histogram Dataset corresponding to water surface. Otherwise, the 
cloud screening observables for land are calculated, the CSSC Dataset is used to identify the sur- 
face type, and the appropriate part  of the RC Histogram Dataset is accessed. 

Further information on  the contents of the RC Histogram Dataset is provided in  83.5.1. 

3.3.5 Update thresholds 

3.3.5.1 Physics of the problem 

For any single sun-view geometry, r4 and 0 3  will  have fairly constant values over all deep- 
water covering the globe. Thus, the ocean thresholds for deep water can be established early on  in 
the mission without a continuing update procedure. Also, nominal pre-launch thresholds can be es- 
tablished with a high degree of confidence using existing data sets. For shallow waters, where bot- 
tom upwelling radiance becomes important, the static thresholds will  be supplemented by dynamic 
thresholds that are continually updated  using  the procedure outlined in this section. The need for 
this arises from the seasonal variability  in water depth and/or  basin vegetation content. 

Because of  the  variability of the Earth's surface, particularly  over land, it is desirable to have 
the ability to generate thresholds dynamically for certain sections of the cloud detection algorithm. 
This can  be done in automated fashion at the  DAAC  using  the histogramming approach described 
earlier, as applied to accumulated MISR observations over a period  of  time. Analyses of  the  histo- 
grams will be performed to  insure  that  they contain sufficient information to derive updated thresh- 
olds. 

Thresholds are a function of View angle, sun angle, relative  view-sun  azimuth angle, time, 
and place on globe (or surface type). The time dependence can be  of 3 kinds: (a) time independent 
(static), (b) dynamic (seasonal), and (c) dynamic on a less  than seasonal time scale. The latter is 
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approximately monthly,  on a sliding window  (see below). Each observable is compared to three 
thresholds: T1 divides CloudHC from CloudLC, T2 divides CloudLC from ClearLC, and T3 di- 
vides ClearLC from ClearHC. T1 and T3 are either static or  dynamic  on seasonal time scales. T2 
can have any  of  the three time dependencies. The following table shows the  time dependencies of 
the thresholds for the different observables used  in  generation  of  the RCCM. It is possible that the 
shallow water thresholds may  become static at a later time. In this event, the seasonal entries will 
be replaced by temporally invariant thresholds. 

Table 4: Time dependencies of thresholds  in  the RC Threshold  Dataset 
~~ 

Observable Threshold 3 Threshold 2 Threshold 1 

r4 Deep water: Static 

Seasonal Pre-launch: T2 = (T1 + T3)/2 Seasonal D 

Deep water: Static Deep water: Static Deep water: Static 0 3  

Deep water: Static Deep water: Static 
Shallow water: Seasonal Shallow water: Seasonal ~ Shallow water: Seasonal 

Shallow water: Seasonal Shallow water: Seasonal Shallow water: Seasonal 

Post-launch: Monthly, sliding 

Pre-launch: T2 = (T1 + T3)/2 
Post-launch: Monthly, sliding 

Seasonal 

The time dependencies are defined as follows: 

(1) Static means that  the same threshold is used throughout  the mission. 

(2) Seasonal means that a separate threshold  is  defined for Winter, Spring, Summer, 
and Fall (i.e., Jan-Feb-Mar, Apr-May-Jun, Jul-Aug-Sep, Oct-Nov-Dec). As de- 
scribed in the previous section, histograms are generated for each 16-day block. 
Each season is considekd to contain all 16-day  blocks for which  at least 7 days 
of  the block fall within the season.  (It  is therefore possible for a 16-day block to 
be contained within  two seasons.) Histogram analysis is  performed  at the end of 
each season on  the composite histogram generated from  the blocks that are con- 
tained in the season to derive new  values for the  thresholds identified as seasonal 
in Table 4. Current data in a particular season  uses  the threshold derived from 
the previous year’s data in the same season. 

(3) Monthly, sliding works in this manner: For  processing on a given date, the histo- 
grams generated for  the  two  previous  and  completed  16-day blocks are compos- 
ited together  and analysis is  performed to generate a new threshold T2 for the 
observables D and DSVI (see Table 4). This value is  used in processing current 
data. The use  of a 1 month window, coupled with the areal extent of surface 
classes within the CSSC data set ($3.5.3), provides sufficient sampling of data 
to ensure a proper statistical summary for threshold selection. The 1 month win- 
dow slides in order to capture the  seasonal changes in surface and atmospheric 
properties. 

Further information on  the contents of  the  RC Threshold Dataset  is  provided in $3.5.12. 
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3.3.5.2 Mathematical description of the  algorithm 

There are  numerous  automated  threshold selection procedures  that are based only on the fre- 
quency distribution of  an observable Q. Several comparative studies have been performed in order 
to decide which  is the best  procedure (e.g., [ IO] ,  [ I S ] ) .  These studies have shown the results to be 
data-dependent. For the purpose of cloud  detection  from satellite data, preliminary results show 
that  the  method  proposed by  Otsu [I21 performs consistently well for a wide range of AVHRR de- 
rived histograms in  both  the  space  and  time domain. A brief  description of the method is given  be- 
low. 

Let a histogram of Q consist of B bins (nominally, B = 128). Let the frequency of observation 
within a bin be denoted by ni, i E { 1, ..., B}. The histogram is  normalized  and can by  viewed as a 
probability  mass function, that  is 

i = l  

Let the threshold that  divides observations into clear and  cloudy categories be set at bin T2, 
with T2 E { 1, ..., B}, such that  all  values of Q I T2 defines one category, C1, all values of Q > T2 
defines the other category, C,. The probabilities of class occurrence are given by 

The mean class levels are  defined as 

There are  many  discriminant  criterion  measures (or measures of the separability of catego- 
ries)  that  can be  used  to  evaluate  the  “goodness” of the  threshold  (e.g., [6/). For our purpose, the 
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simplest measure is  the  between-class variance, which  is  defined  as 

Substituting Eqs. (5) - (8) into (9) yields 

The threshold that maximizes og( 7'2) is selected as  the optimum threshold f 2 ,  that is 

o i ( f 2 )  = Max[og(T2)], for  1 I T2 5 B (1 1)  

Thus, the approach is founded on the assumption that well-thresholded categories are sepa- 
rated in Q-values and that a threshold that best separates the categories in Q-values would  be the 
best threshold. This algorithm is a robust method of selecting the threshold T2, and does not require 
the histogram to be bimodal. 

T1 and T3 are chosen based  on seasonal or longer term statistics. Over such time scales, the 
histogram is expected to be bimodal. The two  modal  peaks define Tl(peak) and T3(peak), i.e., by 
selecting the histogram bins with  the maximum frequencies of occurrence on either side of T2. T1 
and T3 are calculated by first finding Tl(peak) and T3(peak), the histogram maxima on the respec-, 
tive sides of T2. If multiple bins  on either side of T2 have  the same frequency, the values of 
Tl(peak) and T3(peak) closest to T2 are selected. We  then set 

T1 = T1  (peak) + do1 (2b) 

T3 = T3(peak) +bo3 (3c) 

where o1 is  the standard deviation of the data on the  cloudy  side of T2 and o3 is the standard 
deviation of the data on the clear side of T2, and a and b are scene-dependent parameters with a 2 
0 and b 5 0. 

3.3.6 Generate RCCM 

3.3.6.1 Physics of the  problem 

The parameters r4 and 03 are the primary and secondary observables for water, and D and 
DSVI are the  primary  and  secondary observables for land.  Each  primary and secondary observable, 
in conjunction with the  thresholds obtained from the  latest  version of the RC Threshold Dataset, 
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classifies a 1.1 -km area into  the CloudHC, CloudLC, ClearLC, and ClearHC designators. These 
are then combined together  to form the  final  cloud  mask  for  each camera. 

3.3.6.2 Mathematical  description  of  the  algorithm 

The primary and secondary  masks are combined together to form the final cloud mask ac- 
cording to the following table. The designation No Retrieval is included to cover situations where 
a channel is inoperable, data are missing, or the Radiometric Data Quality Indicator has a value > 
RDQIl or RDQIz (as appropriate) for some other reason. 

Table 5: Logic  for  combining  primary and secondary  cloud masks 

Primary Cloud Mask (rq or 0) 

Secondary 
Cloud 
Mask 

DSVI) 
(03  or I 

~~ 

CloudHC No Retrieval ClearHC ClearLC  CloudLC 

CloudHC 

CloudLC 

CloudHC ClearHC  CloudHC CloudHC CloudHC 

CloudLC ClearHC CloudLC CloudLC CloudHC 

ClearLC 

ClearHC 

ClearLC ClearHC ClearLC  CloudLC  CloudHC 

ClearHC ClearHC ClearHC  ClearHC CloudHC 

No Retrieval No Retrieval ClearHC ClearLC CloudLC CloudHC 

3.4  PRACTICAL  CONSIDERATIONS 

3.4.1  Numerical  computation  considerations 

Requirements on processing speed and data storage are described in [M-171. 
\ 

3.4.2  Programming  and  procedural  considerations 

Guidelines to be followed during algorithm development are described in [M-13] .  

3.4.3 Configuration  of  retrievals 

A Cloud Detection Configuration File is  used  to establish the numerical values of adjustable 
parameters used  within  the retrievals. The purpose of establishing a separate file is to avoid “hard- 
wiring’’ specific values into the software. The Georectified Radiance Product will contain informa- 
tion indicating what  version of  the configuration file was  used.  The contents of the Cloud Detection 
Configuration File are shown in Table 6. The values  shown correspond to the at-launch settings. 
The column entitled “Section” indicates where in this ATB a description of  the specific configura- 
tion parameter is found. 
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Table 6: Contents of the  Cloud  Detection  Configuration File 

Parameter  Value Section 

Glitter exclusion  angle 5, 30"  3.3.1.2 

Maximum value of RDQI  allowable for calculating 0 3  and f 3  over ocean 0 1 (RDQI1) 
3.3.3.2.1 

I I 

Minimum  number of '3 values required for calculating 03 and Pg over ocean 9 3.3.3.2.1 
(n1) 

Maximum value of RDQI  allowable for calculating i., over  land (RDQI2) 0 3.3.3.2.2 

Minimum  number of r3 values  required for calculating P~ over land (n2) 9 3.3.3.2.2 

Minimum  number of D values  required for calculating DSVI (n3) 5 3.3.3.2.2 

Minimum  number of days for considering  a 16-day block part of a  season 7 3.3.5.1 

Logic for combining  primary  and  secondary  cloud  masks Table 5 3.3.6.2 

~ ~~~~~ 

3.4.4 Quality  assessment  and  diagnostics 

Several parameters will  be reviewed by  the  MISR team for quality assessment purposes at 
the SCF. These include comparisons of MODIS-derived cloud masks  with MISR-derived masks. 
In addition, a quality assessment parameter is associated with  the  RCCM. This parameter can take 
on one of four values: 

(1) No retrieval. This could occur if data are missing. 

(2) Secondary test used only. 

(3) Primary test used only. 

(4) Both primary and secondary  tests used. 

3.5 ANCILLARY  DATASETS 

3.5.1  RC  Histogram  Dataset 

The RC Histogram is  generated  routinely  at  the  DAAC  during standard processing. The con- 
tents are shown in Table 1. 

Table 7: Parameters  within  the  RC  Histogram  Dataset 

Parameter  name Comments Units 

Surface identifier Includes  water  and a variety of  land surface types corresponding to none 
the contents of the CSSC Dataset 
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Table 7: Parameters  within  the RC Histogram  Dataset  (continued) 

Parameter  name Comments Units 

Observable  identifier 0 Includes  land  and  water  primary  and secondary cloud vs. clear none 
discriminators 

I View angle I deg. I For each of the  nominal  MISR camera view angles (5 values) I 
~~ 

Sun angle cosine 

date applicability 
Divided into 16-day duration bins calendar Time interval of 

azimuth difference 
0 Divided into 12 bins deg. View-illumination 

0 Divided  into 10 bins  none 

Frequency of occurrence 
of observable none I Divided into 128 gray-level  bins in the histogram 

3.5.2 RC Threshold  Dataset 

A pre-launch version of the  RC Threshold Dataset will  be  used during initial processing. It 
will consist of nominal thresholds. Once automated histogram generation has been initiated at the 
DAAC, the RC Threshold Dataset  will  be updated on a regular  basis. The contents are described 
in Table 1. 

Table 8: Parameters  within  the RC Threshold  Dataset 

Parameter  name Comments Units 

Surface identifier 0 Includes  water and a variety of land surface types corresponding to none 
the contents of the CSSC Dataset 

\ 

Observable  identifier Includes  land  and  water  primary  and secondary cloud vs. clear none 
discriminators 

View angle 

0 Divided  into 12 bins deg. View-illumination 

Divided  into 10 bins none Sun angle cosine 

0 For each of the  nominal  MISR  camera  view angles (5 values) deg. 

azimuth difference 

Time  interval  of calendar Divided  into  16-day  duration  bins 
applicability date 

Threshold T1 none Divides CloudHC from  CloudLC 

Time  dependency none Static or seasonal 
indicator  of T l  

Threshold T2 none Divides  CloudLC  from  ClearLC 

Time  dependency none Static, seasonal, or monthly 
indicator ofT2 

21 



Table 8: Parameters  within  the  RC  Threshold  Dataset  (continued) 
I I I I I Parameter  name 1 Units I Comments I 

Threshold T3 

indicator of T3 
Static or seasonal none Time  dependency 

0 Divides ClearLC from ClearHC none 

3.5.3 Cloud  Screening  Surface  Classification  Dataset 

A pre-launch version of the CSSC Dataset has been derived from the WE1.4D version of 01- 
son's global ecosystem database [ I I ] .  Version WE1.4D contains 59 ecosystem classes mapped 
onto a 10-arcmin grid over the globe. Each unique surface cover type within the CSSC Dataset is 
derived based on the temporal  and spatial properties of the surface being relatively uniform-over 
the grid. This allows for accurate threshold determination since the variance in the properties with- 
in a surface cover type is reduced. Thus, the 59 ecosystem classes are further subdivided into a larg- 
er number of surface cover types. The CSSC Dataset is derived based on the following require- 
ments: 

(1) Each unique surface cover type must  be greater than  12100 k m 2  in area (about 36 
10-arcmin grid points  about the equator); 

(2) A surface cover type  is made up of  the same ecosystem class that is 8-connected 
(defined for  a square-tessellation to be a region  that  is connected to at least one 
of the eight surrounding regions); 

(3) 8-connected regions of the same ecosystem class that  are less than 12100 km2 in 
area are grouped into its same-class nearest-neighbor that  is  within a +5" latitude 
band. 

Note that the third requirement allows a surface cover type  within  the CSSC Dataset to be 
non-contiguous. With these requirements, 1580 surface cover types make up the pre-launch CSSC 
Dataset. Each of these 1580 surface types has an associated indicator specifying whether the sur- 
face is classified as vegetated or  non-vegetated.  Each surface type  is also associated with a param- 
eter value  that is used as part of cloud screening over land. At present, there are only two values of 
this parameter in the CSSC, depending  on  whether  the surface is vegetated or non-vegetated. The 
vegetatednon-vegetated designation  is also used in Level 2 processing lM-91. The CSSC Dataset 
will be updated post launch using data derived from MISR  and  MODIS. 

3.6 CLOUD  DETECTION  PERFORMANCE 

In this section, we  present  some examples of the  RCCM algorithm as applied to  AVHRR  and 
Landsat data. The results should not  be interpreted as validation of  the RCCM algorithm, but rather 
as a guide to showing its functionality. True validation of this algorithm requires actual  MISR data, 
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especially when considering threshold development. Validation also needs  to be performed global- 
ly and over a sufficiently long  time scale to permit the algorithm to  be tested over a rich  variety of 
surface and atmospheric conditions.The examples presented  below, along with hundreds of other 
scenes tested but  not shown provide  us  with confidence in the  method  used to generate the RCCM. 

Three scenes are considered: ocean, land covered  with vegetation, and land covered with 
desert. (The RCCM  is expected to perform poorly  over snow/ice covered scenes. For this reason 
the SDCM and ASCM,  which are generated at Level 2, are used  without  the RCCM to summarize 
the state of cloudiness over snow/ice surfaces [M-8].) The approach taken in generating the land 
examples does not include generating the histograms using  temporal data ($3.3.4). This is present- 
ly under development using AVHRR data. Instead, the histogram is generated based only on the 
data within the scene. This requires the scene to be partially cloudy  in order to get a statistical rep- 
resentation of both the clear and cloudy parts of the scene. Only T2 is generated from the histo- 
gram. T1 and T3, which are static within a season (see Table 4), cannot be determined from the 
histogram as long-term statistics are required. Instead, they are chosen based on our experience in 
analyzing many AVHHR scenes. 

3.6.1 Water 

Over water, the RCCM makes use of data at 1.1 km resolution for the 866-nm band and 275 
m resolution for the 672-nm band. The only appropriate data available to us was Landsat data. We 
use only the Landsat 830-nm band for both  the  primary  and  secondary observables at a degraded 
resolution of 912 m and 228 m, respectively, with  the  assumption  that the standard deviation of the 
866-nm and 672-nm reflectances are similar. The Landsat scene  is shown below  is 58.4 km per 
side. The solar zenith angle is 2" and the view  is  nadir. Figures 4 - 7 show  the reflectance at 114 m 
resolution, the 11 pm brightness temperature at 114 m resolution, the reflectance at 912 m resolu- 
tion, and the standard deviation of the reflectance at 912 m resolution. Note that the scene is char- 
acterized by cumulus clouds of a wide variety of sizes. 

The thresholds are static (see Table 4), and for this sun  view geometry are equal to Tl(r4) = 
0.056, T2(r4) = 0.036, T3(r4) = 0.031, T l ( q )  = 0.0040, Tz(o3) = 0.0025, and  T3(o3) = 0.0012. 
Tl(r4) is consistent with  the conservative thresholds derived in [4] .  With these thresholds the ap- 
plication of the RCCM algorithm produced  the  mask  shown in Figure 8. By carefully comparing 
the  mask  with  the reflectance and temperature fields, we see that  the algorithm performs very  well. 
In this particular example, all pixels have been classified with high confidence, demonstrating the 
usefulness of the secondary observable in detecting subpixel cloudiness. 
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Figure 4.860 nm  reflectance of the  ocean at a  resolution of 114 m 

Figure 5. 11 ym brightness ten1per;lture o f  the oce;111 scc'uc' ;It  a resolution of 114 m 
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Figure 6.830 nm reflectance  for  the  ocean  scene  at a resolution of 912 m 

Figure 7. Stunclartl c i c \ . i a t i o n  o f  the S30 11111 rcl'lcct;lncc for the ocean scene 



Figure 8. Cloud  mask for the  ocean  scene 

3.6.2 Land 

3.6.2.1 Vegetated  scene 

The  AVHRR LAC (1.1 km sub-satellite ground-track resolution) scene shown  below is 256 
x 256 pixels, centered at (2"N, 68.5"W),  which  makes  up part of the Brazilian rain forest. It was 
taken on August 26, 1993. At the c,enter  of the scene the solar zenith angle is 55", the view angle 
is 39O, and the relative azimuth angle between sun  and  view  is 21". Figures 9 - 12 show the 670- 
nm reflectance, the 11 pm brightness temperature, the D field and the DSVI field. Note that the 
scene is characterized by low level cumulus clouds, deep convective plumes and some cirrus 
clouds. 

The histograms for D and  DSVI are shown in Figures 13  and 14, respectively. The automated 
threshold selection procedure ($3.3.5.2) applied to these histograms has chosen threshold values 
of T2(D) = 82 and T2(DSVI) = 34. We  have  chosen for the seasonal thresholds Tl(D) = 15, T3(D) 
= 120, Tl(DSV1) = 25, and T3(DSVI) = 65. With these thresholds the application of the RCCM 
algorithm produced the  mask  shown in Figure 15. The  mask contains 4 gray levels: white = Cloud- 
HC, light gray = CloudLC, dark  gray = ClearLC, and  black = ClearHC. By carefully comparing 
the  mask  with Figures 9 and 10, we see that  the algorithm performs very well. Note that the low 
confidence clearkloud pixels tend  to exist near  the edges of the  CloudHC pixels, indicating that 
pixels at cloud boundaries are  only  partially  filled or that  the clouds simply get thinner at the cloud 
"edges." 
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Figure 9.670 nm  reflectance  field for the  vegetated scene 



Figure 11. D field  for  the  vegetated  scene 

Figure 12. DSVI fleltl For the  vegetated  scene 
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Figure 13. D histogram for the  vegetated  scene. 
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Figure 14. DSVI histogram  for  the  vegetated scene 
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Figure 15. Cloud mask for the  vegetated  scene 

3.6.2.2 Desert  scene 

The AVHRR LAC scene used  is  256 x 256 pixels, centered at (16"N, 11 OW), belonging to 
the desert region in south-central Mauritania. It  was  taken on September 26, 1993. At the center of 
the scene the solar zenith angle is 71.5", the  view  angle  is 54", and the relative azimuth angle be- 
tween sun and  view  is 179". Figures 16 - 19 show  the 670-nm reflectance, the l l pm brightness 
temperature, the D and the DSVI fields. The scene is characterized by a wide range of cloud types. 

The histograms for D and DSVI are shown in Figures 20 and 2 I ,  respectively. The automated 
threshold selection procedure applied to these histograms has chosen a threshold value of T2(D) = 
2.6 and T2(DSVI) = 1.05.  We  have  chosen for the seasonal thresholds Tl(D) = 1.5, T3(D) = 4.5, 
Tl(DSV1) = 0.5, and T3(DSVI) = 1.5. With  these thresholds the application of the RCCM algo- 
rithm produced the  mask  shown in Figure 22.  As in the  vegetated scene, the  low confidence clear/ 
cloud pixels tend  to exist near the edges of  the CloudHC pixels. By carefully comparing the  mask 
with Figures 16  and 17, we see that the algorithm performs  very  well. However, it appears the  al- 
gorithm has slightly overestimated the  number of ClearHC  pixels in the top-right corner of  the 
scene. Upon closer examination of the  terrain within the scene, the scene is  not entirely desert; it 
ranges from  barren dessert in the  bottom-left corner to semi-dessert/shrubs in the top-right corner. 
This emphasizes the  need  to  accurately  partition  the  histograms by land  type (as is done with  the 
CSSC Dataset). No partitioning was done in  this  example in order to demonstrate the errors that 
can be incurred. 
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Figure 16.670 nm reflectance field of the  desert scene 



Figure 18. D field for the desert scene 
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Figure 21. DSVI histogram for the  desert scene 
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I t 

Figure 22. Cloud mask for the desert  scene 
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4. ASSUMPTIONS  AND  LIMITATIONS 
4.1 ASSUMPTIONS 

The following assumptions are made  with  respect  to  the algorithms described in this  docu- 
ment: 

(1) A cone half-angle of 30" is sufficient to insure that  views are free of sun glitter 
contamination. 

(2) MODIS Level 2 scene identification and classification masks  will  be available for 
intercomparisons and quality checks of MISR data. 

4.2 LIMITATIONS 

The following limitations apply to the algorithms described in this document: 

(1) The RC Threshold Dataset  will  initially contain nominal  values. These will be re- 
evaluated within  the first few months of the EOS-AM1  mission. After this, the 
RC Threshold Dataset  will  continually be modified  based  on automated update 
procedures. 

(2 )  Rapid changes in surface reflectivities, e.g., due  to agricultural changes, local 
flooding, etc. over  land  will  temporarily affect the appropriate thresholds for 
cloud detection. 

\ 
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